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1. Introduction 
In this paper we describe our re-implementation 

of the P2 [1] system and the Overlog declarative 
networking language on top of the RAMP Description 
Language [2] (RDL), which can be compiled to a 
hardware implementation. 

Nearly all sufficiently large hardware systems, 
such as those RDL was designed to support, are built on 
the globally asynchronous, locally synchronous design 
pattern because it allows components of the system to be 
constructed and tested independently.  Recently, projects 
like Click [3, 4] and P2 [1, 5-7], have explored the 
construction of traditionally monolithic software systems 
using dataflow components, with a similar 
communications pattern. 

What’s more these software systems have 
admitted a certain performance penalty for the ease of 
specification and debugging that a dataflow execution 
model provides.  In order to recapture this lost 
performance, expand the range of applications for these 
systems and improve the networking functionality 
available to reconfigurable systems programmers, we have 
built a compiler which will transform a P2 Overlog 
specification into a high-performance hardware 
implementation. 

Click was targeted to building router control 
planes and P2 to build overlay networks (e.g. Chord [8], 
Narada Mesh, etc) in a succinct and analyzable fashion. 

RDL was designed to support large scale 
multiprocessor computer architecture research, allowing 
independent researchers to build and assemble complete 
accurate hardware systems, rather than resorting to system 
simulation, which is typically several orders of magnitude 
too slow for applications developement. 

Systems like P2 and Click add value by 
expressing the system as a composition of simple elements 
executed as a dataflow eases design and implementation at 
the cost of overhead.  Additionally, the parallelism in the 
dataflow model is difficult to manage in a microprocessor 
[9].  This project takes the logical extension of expressing 
the high parallelism inherent in dataflow models directly 
in a parallel medium, namely gate level hardware.  We 
show that it is possible to automatically implement 
complex systems in hardware and obtain a substantial 
performance benefit by harnessing the implicit parallelism 
of these systems. 

2. Background 
This project represents the synthesis of several 

areas of research, namely distributed systems, languages, 
databases and computer architecture.  This section 
provides background on the various projects which form 
the basis of our work. 

In this paper, we present an alternative 
implementation of the Overlog language and semantics 
which can be compiled through RDL to Verilog for 
implementation on an FPGA.  Implementing overlay 
networks in hardware has two direct benefits.  Because the 
hardware implementation is specialized and parallel, it can 
run orders of magnitude faster than a comparable software 
system.  Second, a hardware overlay network would 
provide a key component of large scale reconfigurable 
computing clusters such as the BEE2 [10] used by the 
RAMP project [2, 11]. 
2.1 P2: Declarative Overlay Networks 

In the past several years, research in overlay 
networks has changed the way distributed systems are 
designed and implemented.  Overlay networks provide 
many advantages over traditional static networks, in that 
they enable highly distributed, loosely coupled operation 
in a robust, conceptually simple manner [1, 8, 12, 13].  
However, despite the conceptual clarity that overlays 
provide their implementation is typically a complex and 
error prone process. 

P2 and Overlog were designed specifically to 
solve this problem.  P2 uses a high level language, called 
Overlog, to specify the overlay network protocol in a 
declarative fashion.  P2 essentially separates the 
description of the overlay from its implementation, 
making it easier to reason about the correctness of the 
protocol.  Furthermore, P2 automates the implementation 
of the overlay by compiling the declarative description 
into a dataflow execution.  Other projects such as Click 
have shown the value of dataflow execution models for 
simplifying the construction of complex systems. 

Aside from the complexity problems, overlay 
networks typically have performance issues and high 
implementation costs.  Because these networks often 
maintain a large amount of state and a different routing 
topology on top of the already costly TCP and IP 
protocols, they tend to have low performance.  
Additionally, the generality offered by a dataflow model 
comes with performance costs, especially when serialized 
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to run on a microprocessor, thereby losing most or all of 
the parallelism. 

In order to integrate with the current hot topic 
applications like firewalls, 10Gbps routers and intrusion 
detection systems higher performance implementations of 
overlay networks are required.  Worse, the complexity and 
cost of these implementations often forces constraints on 
the size of the test bed which can be constructed thereby 
limiting the reliability of the protocol.. 
2.2 RAMP: Research Accelerator for Multiprocessors 

The RAMP [11] project is developing the 
infrastructure to support high-speed emulation of large 
scale, highly parallel systems. The RAMP Design 
Framework is structured around loosely coupled units, 
implemented in a variety of technologies, communicating 
with latency insensitive protocols over well-defined 
channels.  In this section, we describe the goals and 
implementation of the RAMP Design Framework (RDF) 
as embodied by the RAMP Description Language (RDL) 
and its compiler, both of which are integral pieces of this 
project as well as RAMP. 

The primary motivation for RAMP [14] is to 
replace software based architectural simulations, which 
are 3-5 orders of magnitude slower than ASICs, which are 
too expensive to use in development of massively parallel 
multiprocessor systems.  This will allow operating 
systems and applications researchers to work with new 
architectures before a full system can be built, and allow 
computer architects to reassess long held assumptions in 
the face extreme parallelism. 

In order to support the RAMP project goals, the 
framework must support cycle-accurate emulation of 
detailed (“real hardware”), parameterized machine models 
and rapid functional-only emulations.  The framework 
should also hide changes in the underlying 
implementation from the designer, to allow groups with 
different hardware and software configurations to share 
designs, reuse components and validate experimental 
results.  Finally, the framework should not dictate the 
implementation language chosen by developers. 

The solution for RAMP was to develop a 
decoupled machine model and design discipline, together 
with an accompanying RAMP Description Language 
(RDL) and compiler (RDLC) to automate the difficult task 
of providing cycle-accurate emulation of distributed cross-
platform communicating units. 
2.3 RDL 

A RAMP target design is structured as a series of 
loosely coupled units which communicate using latency-
insensitive protocols implemented by sending messages 
over well-defined channels.  Figure 1 gives a simple 
schematic example of two such units communicating over 
a channel. 

In a typical RAMP design, a unit will be a 
relatively large component, consisting of about 10,000 

gates, e.g. a processor with L1 cache, a DRAM controller 
or a network interface, basically any subset of hardware 
that requires tight coupling or a dependence on specific 
timing.  However our experience with RDL has been that 
it is equally useful for smaller units, such as the tuple 
handling elements documented in section 5. 

 
Figure 2: Simple RDL Model 

 
In RDL all communication is via messages sent 

over unidirectional, point-to-point channels, where each 
channel is buffered to allow units to execute decoupled 
from each other.  In a design with small units, like ours, 
the buffering inherent in the channel model forces delays 
and increased circuit size.  However given the relatively 
abundance of registers to LUTs in most FPGAs, such as 
the Xilinx Virtex2Pro, the buffering is not a problem, and 
the increased latency is less important because the P2 
model admits pipelining of operations on tuples. 

Given such a regimented model of 
communication, computation and timing, the RDL 
Compiler can automatically build the complete 
communications network even between units implemented 
in hardware and software as shown in figure 2 below.  In 
addition debugging tools will be able to monitor and inject 
data on channels, by virtue of their well known semantics 
and opaque implementation. 

 
Figure 2: Cross Platform RDL 

 
As shown in Figure 2, RDL makes a clear 

distinction between the design being emulated or 
simulated, the “target” system, and the platform which is 
performing the emulation, the “host” system.  In this paper 
we will restrict our discussion to FPGA host 
implementations of Overlog targets.  In fact we also spent 
some time on the code necessary to produce Java host 
implementations of Overlog targets, but the java output 
functionality was temporarily removed from the RDL 
Compiler during a major revision to support this project. 
2.4 BEE2 
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The BEE2 [10, 15] is the second generation of 
the BEE FPGA board originally designed to support in-
circuit emulation of radio controllers at the Berkeley 
Wireless Research Center.  The BEE2 was designed to 
support general purpose supercomputing and DSP 
applications in addition to the specialized ICE 
functionality of the BEE. 

The BEE2 is also the primary board to be used in 
the RAMP project.  With 5 Xilinx Virtex2Pro 70 FPGAs, 
each with two PPC405 cores, up to 4GB of DDR2 DRAM 
and four 10Gbps off-board Infiniband or 10Gbps Ethernet 
connections, the board includes over 180Gbps off board 
bandwidth, and 40GB of RAM, enough for even the most 
demanding applications.  Furthermore the bandwidth on 
and off the board has been carefully balanced to avoid the 
bottlenecks which often plague such systems. 

Because the BEE2 is aimed to be primary RAMP 
host platform, we have used it as our test platform.  Given 
the speed and implementation density of Overlog designs 
relative to the BEE2’s capacity, it might also provide a 
useful test platform for overlay networks (see section 3.1). 
3. Applications 

In the previous section we outlined the various 
projects which are key components of our work.  In this 
section we expand on this to suggest the ways in which 
our work will contribute back to these projects. 
3.1 Overlay Networks 

Because a parallel hardware implementation of 
an Overlog program can run orders of magnitude faster 
than the original software implementation of P2, our 
works opens up the possibility of running experiments on 
Overlog programs in fast-time.  Furthermore, since a 
hardware implementation does not time-multiplex a single 
general processor, more nodes can be packed onto a 
BEE2 board than can be run on a normal CPU.  Time and 
space compression could allow testing of larger networks 
than current clusters of CPUs can offer. 

In addition, fine grained (hardware clock cycle 
level) determinism, which is a core part of the RDL 
model, would allow cycle accurate repetition of tests, a 
great boon to those debugging and measuring a large 
distributed system. 

Line speed devices like routers, switches, 
firewalls and VPN endpoints could benefit significantly 
from the parallelism and speed of these implementations 
combined with the high level protocol abstraction 
provided by Overlog.  For example, this could allow the 
design of core-router protocols using a simple declarative 
language, and the automatic generation of 1-10Gbps, line 
rate, implementations of these protocols. 
3.2 Distributed Debugging Tools 

In [16] some of the original P2 authors present a 
debugging framework for Overlog designs which makes 
use of reflection to debug Overlog designs using Overlog 

and the P2 infrastructure.  Of course this should be a 
natural idea given the ease with which such a declarative 
specification captures the semantics of distributed 
systems, exactly like the way debugging checks need to be 
specified.  While the reflection and tap architecture 
presented in [16] is unsuitable for implementation in 
hardware, we believe that similar concepts will be 
appropriate for debugging general RDL designs. 

The reflected architecture is unsuitable for 
general RDL first because the meta-information even for a 
single hardware node could quickly overwhelm the 
storage available at that node, both in capacity and 
bandwidth.  Even invoking the RDL capability to slow 
target system time, this would produce generally poor 
performance.  Second, the ability to add and remove 
dataflow taps which is so simple in software is 
prohibitively complex, even in reconfigurable hardware1.  
In addition, to support code reuse, RDL designs admit 
arbitrary hardware units, including unknown state.  This 
would prevent tracing as presented in [16], as the cause 
and effect relationships between messages is unknown. 

However, even with these limitations the RDL 
model can easily support interposition on channels for 
monitoring or data injection.  Overlog, or a similar 
language, with support for RDL message types, could 
provide a concise and understandable mechanism for 
specifying watch expression, logging and breakpoints with 
complex distributed triggers.  In this case a hardware 
implementation is a necessity not only for interfacing with 
the circuit under test, but also for maintaining the data rate 
which will often well exceed 10Gbps. 
3.3 Computing Clusters 

The major drawback of reconfigurable 
computing platforms, the BEE2 included, has and 
continues to be the infrastructure required to perform 
computation on these boards.  The memory and network 
remain the two main peripherals to FPGAs, and the two 
hardest pieces of hardware to interface to.  This project 
aims to alleviate the situation for networking, by bringing 
a higher level of abstraction, namely Overlog, to bear on 
the problem. 

RDL and RDLC obviate a large portion of the 
communications complexity by providing a uniform 
channel abstraction over a variety of implementations.  
However, the point-to-point model of communication in 
RDL cannot support dynamic topologies. 

Simplified protocols force the use of highly 
controlled networks to avoid packet loss or corruption, 
which these protocols cannot cope with.  In a 1000 node 
RAMP system this kind of restriction would be 
prohibitive.  Providing hardware implementations of high 
level overlay networks could allow their use for general 

                                                 
1 This is a side effect of commercial FPGAs and a lack of applications 
in this area, not a fundamental limitation of the technology. 
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communications, replacing the fragile, unreliable static 
protocols normally used with robust, adaptable overlays. 
4. Languages & Compilers 

In the previous sections we presented the 
enabling research and motivating applications for our 
work.  In this section we switch to a more concrete 
discussion of the code base, including both of the main 
compilers used in this project. 
4.1 RDL and RDLC2 

In section 2.3 we gave a rough outline of the 
semantics and model for the RAMP Description 
Language, RDL.  This section documents the second 
major revision of the RDL Compiler (RDLC2) which 
produces Verilog implementations from RDL source. 

Because one of the goals of the RAMP Design 
Framework is to tie together existing designs, RDL is not 
a behavioral language, it only includes constructs for 
instantiating and connecting units in a hierarchy.  The 
implementations of units at the leaves must be written in a 
RDL host language; Verilog in this paper. 

Because RDLC2 is meant to translate RDL into 
almost any other language (Verilog, VHDL, Java, C, C++, 
BlueSpec, etc) it is structured as a general compiler 
framework, with support for the chaining of code 
transformations, I/O in multiple languages and a robust 
plugin architecture. 

At the core RDLC2 provides two commands: 
shell and map.  Shell takes a leaf unit specification and 
produces the Verilog shell into which the unit’s 
implementation must be written.  Map takes a complete 
system specification and generates an implementation of it 
for the specified platform. 

Shown below is the simplest RDL example: a 
counter.  In this design, a unit representing a button and 
switch is connected to a counter unit, which is in turn 
connected to a display unit. 

 
unit <width> { 
    instance IO::BooleanInput 
        BooleanInputX(Value(InChannel)); 
    instance Counter<$width> 
        CounterX(InChannel, OutChannel); 
    instance IO::DisplayNum<$width> DisplayNumX; 
    channel InChannel; 
    channel OutChannel { -> DisplayNumX.Value }; 
} CounterExample; 
unit <width = 32, saturate = 1> { 
    input bit<1> UpDown; 
    output bit<$width> Count; 
} Counter; 
unit { 
    output bit<1> Value; 
} BooleanInput; 
unit <width = 32> { 
    input bit<$width> Value; 
} DisplayNum; 

 

Notice that units can include parameters, in this 
example the width and saturate parameters to the counter 
control the bit width and whether it saturates at 0.  Not 
shown in this example are external connections, which 
allow the BooleanInput and DisplayNum units to connect 
to chip level wires and thus perform user visible I/O. 

 
Figure 3: Shells 

 
Shown in figure 3 above are two unit shells 

connected by a channel.  The key point of this diagram is 
the control signals for the channel, which exactly match 
the synchronous FIFO semantics of the channel-unit 
interaction.  This simplicity of this interface, and the 
temporal disconnection of the units at either end of the 
channel are key to the ease with which RDL units can be 
implemented, and a big part of the success of this project. 

�
�
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Figure 4: Unit Wrapper 

 
In addition to shells, which are generated prior to 

unit implementation, the other output of RDLC2 are the 
unit wrappers, which are generated by the map command.  
Wrappers include the logic to marshal and unmarshal the 
structured (struct, union and array) RDL messages types 
from simple fixed width bit vectors.  Wrappers also 
include the start and done logic, which is responsible for 
maintaining the timing model required to keep the target 
system deterministic in the face of host level 
communications uncertainties. 

The map command may also invoke a series of 
plugins designed to implement specialized units.  This 
functionality is used to generate e.g. small SRAMs and 
FIFOs, with uniform semantics but platform specific 
implementations.  This is also used to generate some of 
the more complex Overlog elements documented in 
section 5.  In truth this borders on allowing behavioral 
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specifications in RDL, however these plugins must still be 
specialized to each output language family2. 

In many respects RDL is similar to the Liberty 
Structural Specification Language [17] or the Click [3] 
language.  The differences are in the timing model and 
high level data types provided by RDL. 
4.2 Overlog 

Overlog is a variant of Datalog designed to 
manipulate database tuples, implementing distributed 
inference over a set of relations.  An Overlog program 
consists of a set of relation declarations, where each 
relation is a materialized table or a stream of tuples, 
combined with a set of inference rules of the form: 

 
Name Relation1@N(A, B + 1) :- Relation2@N(A, B); 

 
This rule specifies that a tuple being added to 

relation Relation2 at node N should result in a tuple being 
added to Relation1 at node N, with the relevant fields.  
Notice that both relations 1 and 2 could be materialized 
tables or tuple streams. 

In the original Overlog syntax given in [1], only 
materialized relations need to be declared and even then 
they are un-typed.  Firstly, because we are generating 
hardware, which should be efficient, we require that the 
types of relation fields be declared ahead of time.  
Secondly, in order to simplify the planner, and catch a 
larger portion of errors at compile time, we required tuple 
streams to be similarly declared.  Examples of 
materialized table and tuple stream declarations for our 
modified dialect of Overlog are shown below. 

 
materialize TName [10] for 10 (key Int, Int); 
stream SName (Int, Bool, NetAddress); 

 
While most of the hardware implemented at the 

time of this writing can handle un-typed tuples more 
interesting features like paging materialized table storage 
out to DDR2 SDRAM to support very large tables would 
be costly without a certain minimum of type information. 

More importantly, in the short term these 
declarations have allowed us to catch a number of 
mindless typos and programmer errors at compile type.  
The dangers of poor type checking in hardware languages 
are all too real, as Verilog provides almost non-existent 
and non-standard type checking. 

As a final exercise we present the Overlog 
program fragment shown below, which is an extension of 
one of our tests.  It declares two streams, tells the 
compiler to put a watch of each of them for debugging 
during simulation, specifies some base facts, and a simple 
rule for computation. 

                                                 
2 An example family is the hardware family including Verilog and 
VHDL, which are very similar. 

 
stream Stream0(Int, Int); 
stream Stream1(Bool); 
 
watch Stream0; 
watch Stream1; 
 
Stream1(true); 
Stream0(0, 1); 
Stream0(2, 3); 
Stream1(false); 
 
Stream1@N(A > B) :- Stream0@N(A, B); 

 
The expected output of this program is shown 

below.  However the interleaving of the results will differ 
based on the actual execution timing. 

 
Stream1: <true> 
Stream0: <0, 1> 
Stream1: <false> 
Stream0: <2, 3> 
Stream1: <false> 
Stream1: <false> 

 
In section 5, we discuss the details of our 

Overlog planner, and the architecture of the resulting 
system, but we must also briefly touch on the integration 
of the Overlog and RDL compilers.  In section 4.1, we 
described RDLC as a compiler framework with support 
for a plugins.  These features allow us to specify the 
Overlog compiler as a chain of program transformations 
turning an Overlog program into and RDL design which is 
then turned into a Verilog design.  In addition, this 
chaining could easily support Overlog rule rewriting such 
as the localization described in [6].  Finally the plugin 
architecture allows us to specify the static portions of the 
RDL design using RDL which includes plugin invocations 
to fill in the implementations based on the Overlog. 

This pattern of RDLC2 transformation chains 
and plugins has also been used to implement a computer 
architecture compiler with an integrated assembler.  We 
believe it is general enough to support nearly any 
transformation required. 

The Overlog compiler contains four distinct 
components which are chained together.  First, the front 
end lexes and parses the inpu.  Second a resolve 
transformation performs error checking and variable 
dereferences.  Third, the Overlog planner plugin is 
invoked by the RDL portion of the compiler to fill the top 
level P2 unit in with the various units required implement 
the Overlog program.  And finally, a series of hardware 
generator plugins create the actual Verilog unit 
implementations of the dataflow elements used by the 
planner. 
5. System Architecture 
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An RDL design is composed of communication 
units, the lowest level of which are implemented in a host 
language, in this case Verilog.  A P2 system however is 
composed from a fixed set of elements, assembled to 
match the input Overlog program. 

This section describes the elements we have 
implemented as RDL units, and the planner transformation 
which assembles these elements.  Shown in figure 5 below 
is a complete system including the network, several rule 
strands, a table and the table of base facts which are used 
to initialize the Overlog program. 

As in P2, our implementation consists of a series 
of linear dataflow sub-graphs called, roughly one per 
Overlog rule.  Each strand starts with a triggering event, 
and ends with a resulting action.  Events include updates 
to tables, reception from the network or timers specified 
using the special periodic relation. 
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Figure 5: A Complete Overlog Node 

 
5.1 Data Representation 

This system includes two programming 
languages and three abstractions of computation, each 
with its own data model.  At the Overlog level, data is 
presented as materialized relations and tuple streams 
which are manipulated with the standard relational 
operators.  We write these tuples as follows. 

 
<10.1.1.1, 0, true> 

 
This is an example of a tuple with a destination 

network address, followed by an integer and a Boolean 
field.  Notice that this abstraction omits the details of 
mapping these tuples to actual wires. 

RDL units handle tuples as streams of fields, 
annotated with type, start of tuple and end of tuple signals.  
The RDL declaration for these messages is shown below. 

 
message <IWidth, TIDWidth, NAWidth> mstruct { 
 Data<$IWidth, $TIDWidth, $NAWidth> Data; 
 Marker Marker; 
} Field; 
message <IWidth, TIDWidth, NAWidth> munion { 
 bit<$IWidth> Integer; 
 ::1::NetAddress<$NAWidth> NetAddress; 
 bit<1> Boolean; 

 event Null; 
} Data; 
message mstruct { 
 bit<1> Start, End; 
} Marker; 

 
From this specification of RDL messages, RDLC 

automatically generates wires of the specified bit widths, 
for each field of a union or struct.   Union fields are 
muxed down to a single set of wires for transmission and 
storage in the channel.  In order to support this 
marshaling, RDLC adds a of tag wires and constants 
which allow a unit or channel to specify which subtype a 
union currently holds. 

Our representation of tuples was designed with 
two constraints in mind.  First, because the original P2 
system uses seconds as the time units, time multiplexing 
hardware is a profitable way to reduce implementation 
costs without affecting the functionality of Overlog 
programs.  Even with time units in milli-or micro-seconds, 
bottlenecks due to the serialization of fields are unlikely, 
given that most modern FPGA implementations run in 
excess of 50MHz without difficulty. 

The second constraint is on the handling of 
variable length and un-typed tuples.  In addition to 
components like the network and arbiters, which must 
handle tuples from widely different relations, our early 
experiences trying to build distributed databases in 
Overlog suggested that the ability to store dynamically 
typed tuples would be a valuable feature.  By supporting 
this kind of processing we can allow future work to build 
run time programmable tuple processing elements.  These 
elements will be costlier due to lack of typing information, 
hence the addition of types to Overlog in order to reduce 
these costs where possible. 

As a final note, because the bit widths of the 
values in our system have been parameterized, it is 
possible to build smaller or larger systems as needed on a 
protocol to protocol basis, simply by changing the width 
of integers or network addresses.  In the future we believe 
a more direct translation between Overlog and RDL types 
would be helpful both for implementation efficiency and 
for supporting Overlog as a debugging tool for RDL. 
5.2 Tables & Storage 

Because Overlog is primarily targeted to building 
overlay networks, materialized tables are slightly different 
than standard SQL-style tables.  In addition to size limits 
and keys for tuple identity, Overlog includes expiration 
times for stored tuples. 

Providing support for all three of these features 
in hardware was one of the primary sources of 
implementation complexity for this project.  With the high 
implementation costs of hash-based indexing structures, 
and the relatively small size of tuples and tables, we chose 
to implement all table operations as linear scans. 
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Shown in figure 6 is the composite table unit, 
which supports a single input and output.  Input requests 
are represented as an RDL message union of events, 
which reduces to a set of tag wires with no data. 

 
message munion { 
 event Scan, Insert, Delete; 
} TableRequest; 
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Figure 6: Table Implementation 

 
A scan operation simply iterates over all tuple 

fields in the table sending them to the output in order.  An 
insert and delete must also perform a join against the input 
tuple to match keys.  In both cases a match implies that 
the existing tuple should be dropped.  Because these 
operations are implemented as scans, they can in fact 
perform garbage collection on unused areas of the table 
memory, by simply rewriting the entire table.  Tables can 
include tuple expiration times, forcing a rewrite on a scan 
as well in order to avoid outputting a stale tuple. 

Because new tuples are always inserted at the 
end of the table, and the table is garbage collected on each 
scan, it was a simple matter to implement the drop-oldest 
semantics for full tables: the oldest tuple will always be 
the first one in scan order. 
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Figure 7: Multi-Port Table Adapater 

 
Shown in figure 7 is the unit used to provide 

multiple ports to the table, in order to support multiple 
rules which access a single table.  The input stage consists 
of a round-robin arbiter, modified to allow multiple table 
scans to proceed in parallel.  Since it is common for many 
rules to use a table in their predicate, this is an important 
performance optimization. 

In our original design system, we intended to 
pack tuples down to the minimum number of bits, shifting 
and filling where needed based on types.  However, 
providing support for un-typed tuples made this an 

expensive proposition, as the implementation would 
require either a barrel shifter (very expensive in FPGAs) 
or possibly many cycles per field.  Instead each tuple field 
is stored at a separate address in the table memory. 
5.3 Rule Strands 

Figure 8 shows a complete rule strand, including 
the logic for triggering table scans on the arrival of an 
event, and the tuple operation unit, shown in detail in 
figure 9. 

 
Figure 8: Rule Strand 

 
Because each Overlog rule has at most a single 

event predicate which is joined with many materialized 
tables, each strand consists of a series of nested scans 
which are triggered by the arrival of the relevant event.  In 
Overlog an event can be an update to a table, the arrival of 
a tuple from another node, or a periodic timer event. 

 
Figure 9: Tuple Operation Unit 

 
Tuples, including the event tuple, and those 

resulting from scans, are fed into a Tuple Operation unit, 
which consists of a series of field reordering buffers, 
chained to implement a nested loops join, and a Tuple 
Field Processor, which will perform the actual 
calculations.  We describe the Tuple Field Processor in 
section 5.4. 

�
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Figure 10: Field Reorder Buffer 

 
Figure 10 shows the implementation details of 

the field reorder buffer.  These buffers duplicate and drop 
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fields as required to support the calculations and joins 
specified by the Overlog.  For example the rule 
Result@N() :- periodic@N(A, 10) does not use any of the 
input fields of the periodic event stream, in which case the 
reorder buffer for the periodic stream will simply drop all 
fields.  In the rule Result@N(A, A) :- Predicate@N(A, B, 
C), the field reorder buffer would duplicate the A field, 
and drop the B and C fields. 

The reorder buffers decouple the sequencing of 
data, which is implied by the output field order, from the 
operations performed in the Tuple Field Processor.  The 
alternative is direct implementation of the dataflow graph 
extracted from each rule, with a channel for each variable.  
However, because tuples will not arrive very close 
together such a direct implementation would be severely 
wasteful in FPGA resources to no appreciable benefit. 
5.4 Tuple Field Processor 

In order to time share the hardware which 
performs the computation for each Overlog rule, we built 
a small stack processor generator.  While there must still 
be one such processor per Overlog rule, this decreases the 
implementation cost by a factor between 5 and 20, 
depending on the complexity of the rule. 

A tuple field processor has three memories: 
stack, constant table and instruction ROM.  It implements 
relational join, select, aggregate and computations.  
Projection is handled in the reorder buffers. 
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Figure 11: Tuple Field Processor 

 
Figure 11 shows a simplified schematic of a tuple 

field processor.  The operations bubble is specialized for 
the operations required by the Overlog rule the TFP 
implements.  Furthermore, there is no support for jump, 
conditional or loop constructs.  Without conditionals, 
selection is implemented by optionally writing output 
fields based on prior binary selection conditions that result 
from both joins and Overlog selection clauses. 

Using a processor introduces the possibility of 
loading new transformations in at run time, by adding a 

port to write incoming tuples to the instruction memory.  
This would allow an Overlog node to be dynamically 
reprogrammed without re-running the compiler tools.  
This is less general than full FPGA reconfiguration, since 
it cannot change the overall dataflow of tuples, however 
that could be implemented using mux units. 

A significant portion of the Overlog compiler 
code is actually the compiler from Overlog to a custom 
assembly language for the TFP, and the code which then 
assembles and links these programs and builds the 
specialized TFPs to execute them. 

Conceptually, the TFP and its assembly language 
are very similar to the PEL transforms which are 
embedded in the original P2 system for much the same 
purpose.  However where PEL transform significantly 
ease the implementation of Overlog in software, the TFP 
is an efficiency optimization which reduces the size of the 
generated circuits by almost an order of magnitude for 
more complex rules. 
5.5 Network Interfacing 

The extremely large capacity of modern FPGAs 
such as the Xilinx Virtex2Pro 70 on the BEE2, enables us 
to pack many Overlog nodes on each FPGA.  This implies 
that the network infrastructure must span both on-chip and 
off-chip connections.  To this end, we developed a high-
bandwidth cross-bar packet switch to connect nodes 
regardless of their location.  As with the components in 
the nodes themselves, the cross-bar and the network 
interfaces were designed and implemented in RDL. 

Figure 12 shows a simple schematic of the 
network interface which connects each node to the 
network and test infrastructure. 

 

Figure 12: Network Interface 
 

This interface sends packets composed of 
individual tuples encapsulated inside a tuple containing 
source and destination information.  The tuples come into 
and out of the interface as a series of fields and are 
serialized down to an fixed size for transmission through 
the network. 

The switch provides a parameterized number of 
ports, all fully connected through a cross-bar connection.  
The choice of a cross-bar enables the highest performance 
at the cost of increased resource utilization.  We have also 
implemented a “horn and funnel” type switch which uses 
fewer resources and has lower performance.  One of the 
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key points of this network is that the bandwidth is 
essentially the network width times the number of 
crossbar ports, lending itself to creating large, high 
bandwidth networks very easily. 

Overlog nodes are not the only endpoints on this 
network.  Transceivers and “proxies” can be attached to 
any port, allowing nodes to communicate from FPGA to 
FPGA on the same board and on other boards.  For our 
test harness, we use this capability to connect the nodes to 
a Linux system running on the BEE2 control FPGA in 
order to inject and collect tuples through C programs.. 

Finally, the switch instantiates a module which 
specifies a routing policy for each port.  For our test 
system we use a simple policy that routes based on switch 
port number with a designated default port.  More 
complicated routing policies such as longest prefix match 
are also possible. 
6. Testing 

Since our implementation is still in the relatively 
early phases, we have only run a series of small and 
synthetic test programs through it.  Original we had hoped 
to run a Chord ring, but the complete Overlog semantics 
remain more complicated than could be implemented with 
RDLC2 within a reasonable timeframe (See section 9.3). 
6.1 Test Overlog Programs 

Our tests consist of several example Overlog 
programs designed to exercise the Overlog compiler, 
planner, TFP generator and Table implementation.  Of 
course these tests also cover the vast majority of the 
hardware unit implementations. 

 
• Facts: This test was designed simply to display 

Overlog base facts without processing.  This is 
the bare minimum Overlog program, though it 
does test portions of the networking hardware, 
and the majority of the infrastructure code.  In 
addition to a sanity check, this provides absolute 
minimum implementation costs. 

• Simple: The simple test consists of a single rule, 
which fires periodically and increments the 
sequence number generated by a timer.  In 
addition to the hardware in the Facts program, 
this includes a periodic timer, and a single Tuple 
Operation unit, with a single reorder buffer. 

• Multi-Stream: Building on the simple test, this 
program generates a tuple stream by performing 
some simple calculations on a periodic tuple, and 
then runs these tuples through two more rules.  
This primary motivation for this test was to 
provide latency and circuit size measurements. 

• Table: A simple table test, which performs 
inserts and limited scans over a table which 
stores a single tuple.  This test exhibits a base 

implementation cost of the table, for size and 
performance comparisons. 

• Join: This test adds a larger table, 20 tuples, and 
performs a join over these to lookup tuples 
inserted during a specified time range according 
to sequence numbers from the periodic source. 

• Aggregate: Performs a series of simple 
aggregates over a table, including count, min and 
max. 

• SimpleNet: A relatively simple network test, 
which accepts tuples, performs a calculation on 
them and sends the resulting tuple back to a 
given address.  This was used to test the network 
interfaces and Linux based debugging tools. 

6.2 Test Platform 
We are currently using the BEE2 as our test 

platform, primarily because it is used by the RAMP 
project.  The topology of the BEE2 is such that one of the 
five FPGAs is designated the “control” FPGA while the 
remaining four are designated the “user” FPGAs.  The 
control FPGA boots full Debian GNU/Linux on one of the 
embedded PowerPC 405s in the Virtex2Pro.  From this a 
user can log in to the board, program the user FPGAs and 
interact with them over high-speed parallel I/Os links. 

We have reused infrastructure we originally 
developed for the RAMP project to connect the tuple 
network directly to software accessible FIFOs on the 
control FPGA.  The linux kernel on the has drivers which 
abstract the these FIFOs as either character devices or 
virtual Ethernet channels.  We use the FIFOs as character 
devices allowing us to write simple C code to inject and 
read back tuples by reading and writing files.  Figure 13 
gives a schematic view of this connectivity. 
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Figure 13: Network Topology 

 
In addition to sending and receiving tuples 

through this interface, we use the hardware FIFOs to 
collect statistics and events directly from the hardware.   
By sharing the infrastructure originally developed for the 
RAMP project, we have significantly eased the integration 
of standard Linux software and raw hardware. 
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Future development with Overlog and RDL will 
make I/O a first class primitive which can be more easily 
defined within the language itself.  Having I/O defined 
explicitly in the system description will enable more 
robust debugging and potentially higher performance 
communication.  By integrating this with the cross-
platform capabilites of RDLC, we can also ensure that 
future projects will be able to share similar 
communications infrastructure even more easily than we 
were able to. 

 
7. Performance Results 

This section presents performance numbers both 
on the compiler and the hardware that it generates.  Given 
that this project is still in the relatively early stages, these 
should be considered rough numbers. 
7.1 Compiler Performance 

Shown in table 1 below are various compiler and 
simulation performance metrics for the test programs 
described in section 6.1.  Most of these metrics are tied to 
the high level system design and the conceptual mapping 
of Overlog onto RDL.  Even without a current basis for 
comparison, these numbers are  important as a baseline for 
our future work. 
Test Memory Comp. 

Time 
Load 
Time 

Sim 
Time 

Facts 10MB 5.51s 1:07m 1.68s 
Simple 13MB 5.65s 1:15m 2.84s 
MultiStream 13MB 15.22s 1:42m 3.43s 
Table 15MB 18.96s 1:39m 5.21s 
Join 18MB 17.01s 1:28m 5.14s 
SimpleNet 11MB 11.70s 1:57m 1.82s 

Table 1: Compiler and Simulation Costs 
 
The four numbers, in order, the RDLC and 

Overlog compiler memory usage and time, minus the 
30MB and the time it takes to load all of RDLC and the 
JVM.  At 150K lines of code and 10MB even for a simple 
Overlog design, the compiler is clearly overly large.  See 
section 9.3 for more information. 

The next two metrics are related to the 
performance of hardware simulations using the industry 
standard ModelSim SE 6.1e.  The load time is measured 
from simulator invocation to the completion of Verilog 
compilation, and is a reasonable metric for the code 
complexity.  The simulation time is the amount of real 
time taken to simulate 100us circuit operation, more than 
enough time for all of the programs to do useful work.  
The clock period of the simulation is 1ns, to ease the 
math, despite the fact that this is unrealistic.  Most of the 
load time is inherent in the simulator we used, especially 
since it uses a networked licensing scheme.  Load times 
therefore are a relative measure of complexity. 

All compilations and simulations in this table 
were run of an unloaded P4 3GHz with 1GB of RAM. 

Aside from the memory hogging inherent in 
RDLC, most of which is due to inefficiencies in the 
RDLC2 core, and it’s java implementation, these numbers 
are reasonably promising.  We revisit the simulation time 
in section 9.3 however. 
7.2 Micro-benchmark Performance 

Shown in table 2 are the results of the Xilinx 
FPGA Place and Route tools for each test program.  These 
results were produced with Xilinx ISE 8.1 on an AMD 
Opteron 146 with 3 GB of memory.  For these we used 
the included XST synthesis tool, rather than the more 
powerful Synplify Pro because of issues with IP licensing 
for Xilinx specific cores. 
Test #LUT #FF Clock Time 
Facts 468 450 175 MHz 1 m 35 s 
Simple 1155 867 172 MHz 2 m 1 s 
MultiStream 2260 1546 173 MHz 3 m 47 s 
Table 2303 1655 173 MHz 3 m 25 s 
Join 2606 1837 177 MHz 3 m 50 s 
SimpleNet 980 806 176 MHz 1 m 55 s 

Table 2: Hardware Statistics 
 
The LUT and Flip-Flop counts are presented for 

two reasons, first, they impose a hard limit on the number 
of nodes which can be implemented in an FPGA.  In 
addition they affect the PAR tool run time and clock 
frequency the synthesized circuits can run at. 

Given that the largest tests implemented roughly 
a single Overlog rule, a Virtex2Pro 70 could hold roughly 
a single Chord node.  However, we believe that these 
hardware costs could be significantly reduced with better 
compiler optimizations. 

The most impressive numbers in table 2 are 
undoubtedly the clock frequencies.  A 100MHz design on 
a Virtex2Pro is fairly standard, and not too difficult, but 
normally anything over this must be hand optimized for 
performance.  From the fact that RDL designs with small 
units generally balance LUT and Flip-Flop usage, it is 
clear that these designs are highly pipelined, with 
increases their operation frequency into a range unheard 
of for automatically generated designs. 

As impressive as the raw numbers in table 2 is 
the simple fact that P2 takes ~100ms to respond to a 
query, whereas our hardware implementation will 
typically respond in maybe 100 clock cycles, which at 
100MHz results in a 1us turn around on input queries, a 
very impressive result for a such a high level input 
language as Overlog.  Of course the price for this 
performance includes the cost of owning and FPGA 
board, which many researchers do not. 

However the biggest price, is undoubtedly the 
cost of recompiling a system through the FPGA synthesis 
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tools.  While the runtimes for these projects are 
reasonable, many larger BEE2 applications have been 
known to take in excess of 12 hours, implying that 
progress in this area will be required to make hardware 
Overlog implementations as flexible as their software 
counterparts. 
8. Conclusion 

By and large, this project marks a considerable 
success and the confluence of several research projects.  
By themselves Overlog, RDL and the BEE2 are all 
interesting, but combined they promise to open up both 
new research avenues and new application areas.  Despite 
the successful execution of this project, there exists a 
significant amount of work to be done, as outlined in 
section 9.  In the remainder of this section we detail the 
lessons from our implementation efforts, and discuss their 
impact. 

Many of the implementation decisions in this 
paper relate to the running time and space of our design.  
When switching from software to hardware, O(1) becomes 
O(n) because operations reflect their per-bit cost in the 
absence of a fixed bit width CPU.  This caused us 
consternation during the design process, as we tried to 
optimize all of our operations, with little regard to relative 
run time of hardware and software.  What’s efficient in 
hardware is not the same as what is efficient in software 
and a project, like this, which spans the two can be tricky 
to design.  In the end we took the view that a functional 
result was the primary goal and speed could wait.  We feel 
justified in this, as it was often unclear what was feasible 
and what was not, and with 150 thousand lines of code in 
the various compilers, it has been a significant effort to 
get to this point.  Furthermore the hardware 
implementation by virtue of its specialization is faster than 
most software could ever hope to be, even without heavy 
optimization. 

In the end the biggest drawback of the current 
implementation of the Overlog compiler and language 
relates to its inability to handle system level I/O.  While 
our test platform provides a clean link to software which 
can inject and read back tuples, the process of making this 
connection to an I/O block needs to be automated in the 
compiler.  We believe this will prove to be one of the 
main requirements for useful systems written in Overlog, 
just as the ability to generate non-channel connections was 
key to making RDL a useful language for this project. 

The best news at the conclusion of this project is 
the relative ease with which it was completed.  Normally 
any hardware design this large might take a man-year or 
more.  However we implemented it in 3 months, including 
2 and ½ man-months of coding for RDLC2, and the 
FLEET [18, 19] compiler, an extension to RDLC2 similar 
to the Overlog compiler, which provided good debugging 
tests for RDLC2.  The Overlog compiler and elements 

themselves took about 3 weeks and we were able to 
implement the complete system in about 6 man-weeks. 

Furthermore, those Verilog modules which are 
generated by Java plugins for RDLC are very powerful, 
allowing the Tuple Field Processor and Reorder units 
described in section 5 to be built from scratch in about 2 
days total, with another half day of debugging.  
Considering that these units amount to a small data cache 
and processor, along with an assembler and processor 
builder, this is an almost unheard of time frame. 

We believe the modularity of RDL, combined 
with the high-level semantics of Overlog contributed 
significantly to the ease of development.  For example, the 
testing was quite laborious until we implemented the Base 
Facts unit to supply raw tuples specified in an Overlog 
program to a P2 system at startup.  What’s more it took 
only a few hours to add all of the language and compiler 
support for this feature. 

Overall the success of these compiler tools in 
assisting their own development suggests that they are 
most definitely useful, and we look forward to building 
real applications with them.  This success has also been a 
large part of our interest in applying these tools to 
architecture debugging for the RAMP project. 
9. Future Work 

A significant fraction of the time to complete this 
project was simply getting to the point where sufficiently 
complicated RDL could be compiled to hardware.  In the 
end, the quality of implementation of the Overlog 
compiler has been sacrificed somewhat for speed of 
development: there’s a definite lack of flexibility in the 
RDLC2 framework and supported Overlog constructs. 

For example a better framework for the planner 
would easily allow us to implement Chord, as outlined 
below, as well as providing compile time optimizations 
like constant propagation and expression simplification. 
9.1 Chord in Hardware 

In the relatively short term we hope to be able to 
boot a chord ring in hardware.  By adding type 
declarations, and some minor lexical and syntactic 
changes, we were easily able to compile the Chord 
specification used for P2 testing, but it cannot be 
transformed into RDL with the current version of RDLC2 
and the Overlog planner. 

The first big problem here is the use of null or 
out-of-band values.  We did not implement support for 
these well enough, and changing this would have required 
rewriting large portions of Java that generates Verilog.  
Furthermore compiling Chord also exposed a latent bug in 
our handling of nested table scans for rules with multiple 
materialized table inputs and again the fix for this would 
have involved painful surgery on Verilog.  We will 
discuss these problems in section 9.3. 
9.2 Java Implementation 
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Early in this project, while we were using 
RDLC1, which has Java output support, we actually did a 
fair amount of work on a java implementation to match 
the hardware.  Because RDLC is designed generate code 
for software and hardware hosts equally easily, this would 
open up interesting possibilities for research.  Firstly, this 
would provide option to split the implementation between 
hardware and software.  Second because an RDL software 
system is essentially a highly parallel program with a user 
level scheduler, this would promote a whole range of 
systems research from schedulers to protection and IPC. 

The main different would be a lack of TFP in 
software, as having access to the RDLC java generation 
back end would allowed us to hard code the tuple 
operations with the need for a TFP or PEL transform. 
9.3 RDLC3 

Many of the problems we encountered were 
related to shortcomings of the RDL Compiler and the 
compiler framework.  While the second generation code 
base greatly increased our capabilities the actual compiler 
code itself is still rather messy, making changes to plugin 
compilers, like Overlog, difficult. 

Our biggest problem was the immaturity of the 
library of hardware units upon which we could draw.  
Tools like the Xilinx Core Generator already exist in this 
area but are vendor specific, do not fit the RDL model and 
are tend to be both buggy and closed source.  One of the 
features on the short list for RDLC3, and key to our 
implementation of Chord is better integration of generated 
units into the compiler either in the form of macro-
replacement, language fragments [20] or at least a better 
Verilog output back end. 

Expanding the unit library to include a DRAM 
controllers, as opposed to just the SRAM generators 
which we built, would allow us to build a paging 
mechanism to store of large relations in the DDR2 DRAM 
on the BEE2.  DRAM controllers as mentioned in section 
2.4, remain one of the most time consuming pieces of 
hardware and yet they will be required to produce large 
scale Overlog systems which go beyond simple overlay 
networks. 
9.4 Debugging Tools & Features 

From the 2-3min turn around time on debugging 
even our micro benchmarks, it became clear that we need 
better performance out of the simulation environment for 
those situations where an FPGA is a poor test platform. 

In addition, we faced a significant number of 
crash bugs in ModelSim during the course of RDLC2 
development.  Some were alleviated by an upgrade, but 
some have been documented by the authors for up to two 
years now without a forthcoming fix. 

In addition to finding a better simulation 
environment, we believe the by developing on the ideas in 
[16] and section 3.2 we could more easily debug Overlog, 
the compiler itself and general RDL designs.  As part of 

RDLC3 we plan to integrate the Overlog compiler with 
the forthcoming RDL debugging framework to support 
debugging not just of Overlog designs, but of all RDL 
designs. 

We believe these enhancements, experience and 
maturity in our tools with lead to their use in real systems 
in short order, as they provide much needed functionality. 
10. References 
1. Loo, B.T., et al., Implementing Declarative Overlays. 2005: 

UC Berkeley. p. 1-16. 
2. Gibeling, G., A. Schultz, and K. Asanovic, RAMP 

Architecture & Description Language. 2005, UC Berkeley. 
3. Kohler, E., et al., The Click modular router. ACM 

Transactions on Computer Systems, 2000. 18(3): p. 263-97. 
4. Kohler, E., R. Morris, and C. Benjie. Programming 

language optimizations for modular router configurations. 
in Tenth International Conference on Architectural Support 
for Programming Languages and Operating Systems. San 
Jose, CA. 2002. 

5. Loo, B.T., J.M. Hellerstein, and I. Stoica. Customizable 
Routing with Declarative Queries. in Third Workshop on 
Hot Topics in Networks (HotNets-III). 2004. 

6. Loo, B.T., et al., Declarative routing: extensible routing 
with declarative queries. SIGCOMM Comput. Commun. 
Rev., 2005. 35(4): p. 289-300. 

7. Szekely, B. and E. Torres, A Paxon Evaluation of P2. 2005. 
8. Stoica, I., et al. Chord: a scalable peer-to-peer lookup 

service for Internet applications. in ACMSIGCOMM 2001 
Conference. Applications, Technologies, Architectures, and 
Protocols for Computer Communications. San Diego, CA. 
2001. 

9. Culler, D.E. and Arvind. Resource requirements of dataflow 
programs. in Honolulu, HI. 1988. 

10. Chang, C., J. Wawrzynek, and R.W. Brodersen, BEE2: a 
high-end reconfigurable computing system. IEEE Design & 
Test of Computers, 2005. 22(2): p. 114-25. 

11. Wawrzynek, J., et al., RAMP Research Accelerator for 
Multiple Processors. 2005. 

12. Huebsch, R., et al., Querying the Internet with PIER. 2003. 
p. 1-12. 

13. Rodriguez, A., et al. MACEDON: methodology for 
automatically creating, evaluating, and designing overlay 
networks. in First Symposium on Networked Systems Design 
and Implementation (NSDI '04). San Francisco, CA. 2004. 

14. Patterson, D., Research Accelerator for Multiprocessing. 
2006. 

15. Droz, P.-Y., Physical Design and Implementation of BEE2: 
A High End Reconfigurable Computer, in EECS. 2005, UC 
Berkeley: Berkeley, CA. 

16. Singh, A., et al. Distributed Monitoring and Forensics in 
Overlay Networks. in Conference of the European 
Professional Society for Systems. 2006. Leuven, Belgium. 

17. Manish, V., N. Vachharajani, and D.I. August. The Liberty 
structural specification language: a high-level modeling 
language for component reuse. in 2004 ACM SIGPLAN 
Conference on Programming Language Design and 
Implementation (PLDI'04). Washington, DC. 2004. 

18. Sutherland, I., FLEET – A One-Instruction Computer. 2005. 
p. 1-12. 

19. Coates, W.S., et al. FLEETzero: an asynchronous switching 
experiment. in Proceedings Seventh International 
Symposium on Asynchronous Circuits and Systems. ASYNC 
2001. Salt Lake City, UT. 2001. 

20. Adams, S.R., Modular Grammars for Programming 
Language Prototyping. 1991, University of Southampton. 


