Combining P2 and RDL to build Dataflow Hardware Programs

Greg Gibeling, Nathan Burkhart and Andrew Schultz
University of California, Berkeley
{gdgib, burkhart, alschult} @berkeley.edu

1. Introduction

In this paper we describe our re-implementation
of the P2 [1] system and the Overlog declarative
networking language on top of the RAMP Description
Language [2] (RDL), which can be compiled to a
hardware implementation.

Nearly all sufficiently large hardware systems,
such as those RDL was designed to support, are built on
the globally asynchronous, locally synchronous design
pattern because it allows components of the system to be
constructed and tested independently. Recently, projects
like Click [3, 4] and P2 [1, 5-7], have explored the
construction of traditionally monolithic software systems
using dataflow components, with a similar
communications pattern.

What’s more these software systems have
admitted a certain performance penalty for the ease of
specification and debugging that a dataflow execution
model provides. In order to recapture this lost
performance, expand the range of applications for these
systems and improve the networking functionality
available to reconfigurable systems programmers, we have
built a compiler which will transform a P2 Overlog
specification into a high-performance hardware
implementation.

Click was targeted to building router control
planes and P2 to build overlay networks (e.g. Chord [8],
Narada Mesh, etc) in a succinct and analyzable fashion.

RDL was designed to support large scale
multiprocessor computer architecture research, allowing
independent researchers to build and assemble complete
accurate hardware systems, rather than resorting to system
simulation, which is typically several orders of magnitude
too slow for applications developement.

Systems like P2 and Click add value by
expressing the system as a composition of simple elements
executed as a dataflow eases design and implementation at
the cost of overhead. Additionally, the parallelism in the
dataflow model is difficult to manage in a microprocessor
[9]. This project takes the logical extension of expressing
the high parallelism inherent in dataflow models directly
in a parallel medium, namely gate level hardware. We
show that it is possible to automatically implement
complex systems in hardware and obtain a substantial
performance benefit by harnessing the implicit parallelism
of these systems.

2. Background

This project represents the synthesis of several
areas of research, namely distributed systems, languages,
databases and computer architecture. This section
provides background on the various projects which form
the basis of our work.

In this paper, we present an alternative
implementation of the Overlog language and semantics
which can be compiled through RDL to Verilog for
implementation on an FPGA. Implementing overlay
networks in hardware has two direct benefits. Because the
hardware implementation is specialized and parallel, it can
run orders of magnitude faster than a comparable software
system. Second, a hardware overlay network would
provide a key component of large scale reconfigurable
computing clusters such as the BEE2 [10] used by the
RAMP project [2, 11].

2.1 P2: Declarative Overlay Networks

In the past several years, research in overlay
networks has changed the way distributed systems are
designed and implemented. Overlay networks provide
many advantages over traditional static networks, in that
they enable highly distributed, loosely coupled operation
in a robust, conceptually simple manner [1, 8, 12, 13].
However, despite the conceptual clarity that overlays
provide their implementation is typically a complex and
eITOr prone process.

P2 and Overlog were designed specifically to
solve this problem. P2 uses a high level language, called
Overlog, to specify the overlay network protocol in a
declarative fashion. P2 essentially separates the
description of the overlay from its implementation,
making it easier to reason about the correctness of the
protocol. Furthermore, P2 automates the implementation
of the overlay by compiling the declarative description
into a dataflow execution. Other projects such as Click
have shown the value of dataflow execution models for
simplifying the construction of complex systems.

Aside from the complexity problems, overlay
networks typically have performance issues and high
implementation costs. Because these networks often
maintain a large amount of state and a different routing
topology on top of the already costly TCP and IP
protocols, they tend to have low performance.
Additionally, the generality offered by a dataflow model
comes with performance costs, especially when serialized

to run on a microprocessor, thereby losing most or all of
the parallelism.

In order to integrate with the current hot topic
applications like firewalls, 10Gbps routers and intrusion
detection systems higher performance implementations of
overlay networks are required. Worse, the complexity and
cost of these implementations often forces constraints on
the size of the test bed which can be constructed thereby
limiting the reliability of the protocol..

2.2 RAMP: Research Accelerator for Multiprocessors

The RAMP [11] project is developing the
infrastructure to support high-speed emulation of large
scale, highly parallel systems. The RAMP Design
Framework is structured around loosely coupled units,
implemented in a variety of technologies, communicating
with latency insensitive protocols over well-defined
channels. In this section, we describe the goals and
implementation of the RAMP Design Framework (RDF)
as embodied by the RAMP Description Language (RDL)
and its compiler, both of which are integral pieces of this
project as well as RAMP.

The primary motivation for RAMP [14] is to
replace software based architectural simulations, which
are 3-5 orders of magnitude slower than ASICs, which are
too expensive to use in development of massively parallel
multiprocessor systems. This will allow operating
systems and applications researchers to work with new
architectures before a full system can be built, and allow
computer architects to reassess long held assumptions in
the face extreme parallelism.

In order to support the RAMP project goals, the
framework must support cycle-accurate emulation of
detailed (“real hardware”), parameterized machine models
and rapid functional-only emulations. The framework
should also hide changes in the underlying
implementation from the designer, to allow groups with
different hardware and software configurations to share
designs, reuse components and validate experimental
results. Finally, the framework should not dictate the
implementation language chosen by developers.

The solution for RAMP was to develop a
decoupled machine model and design discipline, together
with an accompanying RAMP Description Language
(RDL) and compiler (RDLC) to automate the difficult task
of providing cycle-accurate emulation of distributed cross-
platform communicating units.

2.3 RDL

A RAMP target design is structured as a series of
loosely coupled units which communicate using latency-
insensitive protocols implemented by sending messages
over well-defined channels. Figure 1 gives a simple
schematic example of two such units communicating over
a channel.

In a typical RAMP design, a unit will be a
relatively large component, consisting of about 10,000

gates, e.g. a processor with L1 cache, a DRAM controller
or a network interface, basically any subset of hardware
that requires tight coupling or a dependence on specific
timing. However our experience with RDL has been that
it is equally useful for smaller units, such as the tuple
handling elements documented in section 5.

Sending Unit Channel Receiving Unit

Figure 2: Simple RDL Model

In RDL all communication is via messages sent
over unidirectional, point-to-point channels, where each
channel is buffered to allow units to execute decoupled
from each other. In a design with small units, like ours,
the buffering inherent in the channel model forces delays
and increased circuit size. However given the relatively
abundance of registers to LUTs in most FPGAs, such as
the Xilinx Virtex2Pro, the buffering is not a problem, and
the increased latency is less important because the P2
model admits pipelining of operations on tuples.

Given such a regimented model of
communication, computation and timing, the RDL
Compiler can automatically build the complete
communications network even between units implemented
in hardware and software as shown in figure 2 below. In
addition debugging tools will be able to monitor and inject
data on channels, by virtue of their well known semantics
and opaque implementation.

—_———— —

|
— —Ethernet Link— —

|
|
|
|
|
h 4

BEE2 Platform

Figure 2: Cross Platform RDL

J
Java Platform

As shown in Figure 2, RDL makes a clear
distinction between the design being emulated or
simulated, the “target” system, and the platform which is
performing the emulation, the “host” system. In this paper
we will restrict our discussion to FPGA host
implementations of Overlog targets. In fact we also spent
some time on the code necessary to produce Java host
implementations of Overlog targets, but the java output
functionality was temporarily removed from the RDL
Compiler during a major revision to support this project.
2.4 BEE2

The BEE2 [10, 15] is the second generation of
the BEE FPGA board originally designed to support in-
circuit emulation of radio controllers at the Berkeley
Wireless Research Center. The BEE2 was designed to
support general purpose supercomputing and DSP
applications in addition to the specialized ICE
functionality of the BEE.

The BEE?2 is also the primary board to be used in
the RAMP project. With 5 Xilinx Virtex2Pro 70 FPGAs,
each with two PPC405 cores, up to 4GB of DDR2 DRAM
and four 10Gbps off-board Infiniband or 10Gbps Ethernet
connections, the board includes over 180Gbps off board
bandwidth, and 40GB of RAM, enough for even the most
demanding applications. Furthermore the bandwidth on
and off the board has been carefully balanced to avoid the
bottlenecks which often plague such systems.

Because the BEE2 is aimed to be primary RAMP
host platform, we have used it as our test platform. Given
the speed and implementation density of Overlog designs
relative to the BEE2’s capacity, it might also provide a
useful test platform for overlay networks (see section 3.1).

3. Applications

In the previous section we outlined the various
projects which are key components of our work. In this
section we expand on this to suggest the ways in which
our work will contribute back to these projects.

3.1 Overlay Networks

Because a parallel hardware implementation of
an Overlog program can run orders of magnitude faster
than the original software implementation of P2, our
works opens up the possibility of running experiments on
Overlog programs in fast-time. Furthermore, since a
hardware implementation does not time-multiplex a single
general processor, more nodes can be packed onto a
BEE2 board than can be run on a normal CPU. Time and
space compression could allow testing of larger networks
than current clusters of CPUs can offer.

In addition, fine grained (hardware clock cycle
level) determinism, which is a core part of the RDL
model, would allow cycle accurate repetition of tests, a
great boon to those debugging and measuring a large
distributed system.

Line speed devices like routers, switches,
firewalls and VPN endpoints could benefit significantly
from the parallelism and speed of these implementations
combined with the high level protocol abstraction
provided by Overlog. For example, this could allow the
design of core-router protocols using a simple declarative
language, and the automatic generation of 1-10Gbps, line
rate, implementations of these protocols.

3.2 Distributed Debugging Tools

In [16] some of the original P2 authors present a
debugging framework for Overlog designs which makes
use of reflection to debug Overlog designs using Overlog

and the P2 infrastructure. Of course this should be a
natural idea given the ease with which such a declarative
specification captures the semantics of distributed
systems, exactly like the way debugging checks need to be
specified. ~While the reflection and tap architecture
presented in [16] is unsuitable for implementation in
hardware, we believe that similar concepts will be
appropriate for debugging general RDL designs.

The reflected architecture is unsuitable for
general RDL first because the meta-information even for a
single hardware node could quickly overwhelm the
storage available at that node, both in capacity and
bandwidth. Even invoking the RDL capability to slow
target system time, this would produce generally poor
performance. Second, the ability to add and remove
dataflow taps which is so simple in software is
prohibitively complex, even in reconfigurable hardware'.
In addition, to support code reuse, RDL designs admit
arbitrary hardware units, including unknown state. This
would prevent tracing as presented in [16], as the cause
and effect relationships between messages is unknown.

However, even with these limitations the RDL
model can easily support interposition on channels for
monitoring or data injection. Overlog, or a similar
language, with support for RDL message types, could
provide a concise and understandable mechanism for
specifying watch expression, logging and breakpoints with
complex distributed triggers. In this case a hardware
implementation is a necessity not only for interfacing with
the circuit under test, but also for maintaining the data rate
which will often well exceed 10Gbps.

3.3 Computing Clusters

The major drawback of reconfigurable
computing platforms, the BEE2 included, has and
continues to be the infrastructure required to perform
computation on these boards. The memory and network
remain the two main peripherals to FPGAs, and the two
hardest pieces of hardware to interface to. This project
aims to alleviate the situation for networking, by bringing
a higher level of abstraction, namely Overlog, to bear on
the problem.

RDL and RDLC obviate a large portion of the
communications complexity by providing a uniform
channel abstraction over a variety of implementations.
However, the point-to-point model of communication in
RDL cannot support dynamic topologies.

Simplified protocols force the use of highly
controlled networks to avoid packet loss or corruption,
which these protocols cannot cope with. In a 1000 node
RAMP system this kind of restriction would be
prohibitive. Providing hardware implementations of high
level overlay networks could allow their use for general

"' This is a side effect of commercial FPGAs and a lack of applications
in this area, not a fundamental limitation of the technology.

communications, replacing the fragile, unreliable static
protocols normally used with robust, adaptable overlays.

4. Languages & Compilers

In the previous sections we presented the
enabling research and motivating applications for our
work. In this section we switch to a more concrete
discussion of the code base, including both of the main
compilers used in this project.

4.1 RDL and RDLC2

In section 2.3 we gave a rough outline of the
semantics and model for the RAMP Description
Language, RDL. This section documents the second
major revision of the RDL Compiler (RDLC2) which
produces Verilog implementations from RDL source.

Because one of the goals of the RAMP Design
Framework is to tie together existing designs, RDL is not
a behavioral language, it only includes constructs for
instantiating and connecting units in a hierarchy. The
implementations of units at the leaves must be written in a
RDL host language; Verilog in this paper.

Because RDLC2 is meant to translate RDL into
almost any other language (Verilog, VHDL, Java, C, C++,
BlueSpec, etc) it is structured as a general compiler
framework, with support for the chaining of code
transformations, I/O in multiple languages and a robust
plugin architecture.

At the core RDLC2 provides two commands:
shell and map. Shell takes a leaf unit specification and
produces the Verilog shell into which the unit’s
implementation must be written. Map takes a complete
system specification and generates an implementation of it
for the specified platform.

Shown below is the simplest RDL example: a
counter. In this design, a unit representing a button and
switch is connected to a counter unit, which is in turn
connected to a display unit.

unit <width> {
instance IO::BooleanInput
BooleanInputX (Value (InChannel));
instance Counter<$width>
CounterX (InChannel, OutChannel);
instance IO::DisplayNum<$width> DisplayNumX;
channel InChannel;
channel OutChannel { -> DisplayNumX.Value };
} CounterExample;
unit <width = 32, saturate = 1> {
input bit<1l> UpDown;
output bit<$width> Count;
} Counter;
unit |
output bit<1l> Value;
} BooleanInput;
unit <width = 32> {
input bit<$width> Value;
} DisplayNum;

Notice that units can include parameters, in this
example the width and saturate parameters to the counter
control the bit width and whether it saturates at 0. Not
shown in this example are external connections, which
allow the BooleanInput and DisplayNum units to connect
to chip level wires and thus perform user visible I/O.

Sending Unit Receiving Ugi\t\

\
1

v Channel .

Port “DataOut”} ™~ -"1Port “Dataln”
|
)

|
I
|
|
\

’ \\
| |
i

| |
| — =l |
i i
i)) i
; DataOut >) Datain ;
i i
| |
| _READY_DataOut 4 < __READ_Dataln |
| |
i i
| __WRITE_DataOut ») __READY Datain !
i i
i i
i i
i i
i |
\

Figure 3: Shells

Shown in figure 3 above are two unit shells
connected by a channel. The key point of this diagram is
the control signals for the channel, which exactly match
the synchronous FIFO semantics of the channel-unit
interaction. This simplicity of this interface, and the
temporal disconnection of the units at either end of the
channel are key to the ease with which RDL units can be
implemented, and a big part of the success of this project.

State & Control

i
i
i
Fragment, Idie
e _E.’ LinkC
|
i
Fragment, Idie
e _E.’ Link D
|

|
i
|
|
|
Decode,
Link A Assembie &
Ready
T
|
|
i
Decode,
LinkB Assemble &
Ready
|
i

Figure 4: Unit Wrapper

In addition to shells, which are generated prior to
unit implementation, the other output of RDLC2 are the
unit wrappers, which are generated by the map command.
Wrappers include the logic to marshal and unmarshal the
structured (struct, union and array) RDL messages types
from simple fixed width bit vectors. Wrappers also
include the start and done logic, which is responsible for
maintaining the timing model required to keep the target
system deterministic in the face of host Ilevel
communications uncertainties.

The map command may also invoke a series of
plugins designed to implement specialized units. This
functionality is used to generate e.g. small SRAMs and
FIFOs, with uniform semantics but platform specific
implementations. This is also used to generate some of
the more complex Overlog elements documented in
section 5. In truth this borders on allowing behavioral

specifications in RDL, however these plugins must still be
specialized to each output language family”.

In many respects RDL is similar to the Liberty
Structural Specification Language [17] or the Click [3]
language. The differences are in the timing model and
high level data types provided by RDL.

4.2 Overlog

Overlog is a variant of Datalog designed to
manipulate database tuples, implementing distributed
inference over a set of relations. An Overlog program
consists of a set of relation declarations, where each
relation is a materialized table or a stream of tuples,
combined with a set of inference rules of the form:

Name Relationl@N (A, B + 1) :— Relation2@N(A, B);

This rule specifies that a tuple being added to
relation Relation2 at node N should result in a tuple being
added to Relationl at node N, with the relevant fields.
Notice that both relations 1 and 2 could be materialized
tables or tuple streams.

In the original Overlog syntax given in [1], only
materialized relations need to be declared and even then
they are un-typed. Firstly, because we are generating
hardware, which should be efficient, we require that the
types of relation fields be declared ahead of time.
Secondly, in order to simplify the planner, and catch a
larger portion of errors at compile time, we required tuple
streams to be similarly declared. Examples of
materialized table and tuple stream declarations for our
modified dialect of Overlog are shown below.

materialize TName [10] for 10 (key Int, Int);
stream SName (Int, Bool, NetAddress);

While most of the hardware implemented at the
time of this writing can handle un-typed tuples more
interesting features like paging materialized table storage
out to DDR2 SDRAM to support very large tables would
be costly without a certain minimum of type information.

More importantly, in the short term these
declarations have allowed us to catch a number of
mindless typos and programmer errors at compile type.
The dangers of poor type checking in hardware languages
are all too real, as Verilog provides almost non-existent
and non-standard type checking.

As a final exercise we present the Overlog
program fragment shown below, which is an extension of
one of our tests. It declares two streams, tells the
compiler to put a watch of each of them for debugging
during simulation, specifies some base facts, and a simple
rule for computation.

2 An example family is the hardware family including Verilog and
VHDL, which are very similar.

stream StreamO (Int, Int);
stream Streaml (Bool);

watch StreamO;
watch Streaml;

Streaml (true) ;

StreamO ;

0, 1
2, 3
fals

()
()
StreamO ()
(e

) i

Streaml

Streaml@N (A > B) :— StreamO@N (A, B);

The expected output of this program is shown
below. However the interleaving of the results will differ
based on the actual execution timing.

Streaml: <true>
Stream0O: <0, 1>
Streaml: <false>
StreamQO: <2, 3>
Streaml: <false>
Streaml: <false>

In section 5, we discuss the details of our
Overlog planner, and the architecture of the resulting
system, but we must also briefly touch on the integration
of the Overlog and RDL compilers. In section 4.1, we
described RDLC as a compiler framework with support
for a plugins. These features allow us to specify the
Overlog compiler as a chain of program transformations
turning an Overlog program into and RDL design which is
then turned into a Verilog design. In addition, this
chaining could easily support Overlog rule rewriting such
as the localization described in [6]. Finally the plugin
architecture allows us to specify the static portions of the
RDL design using RDL which includes plugin invocations
to fill in the implementations based on the Overlog.

This pattern of RDLC2 transformation chains
and plugins has also been used to implement a computer
architecture compiler with an integrated assembler. We
believe it is general enough to support nearly any
transformation required.

The Overlog compiler contains four distinct
components which are chained together. First, the front
end lexes and parses the inpu. Second a resolve
transformation performs error checking and variable
dereferences. Third, the Overlog planner plugin is
invoked by the RDL portion of the compiler to fill the top
level P2 unit in with the various units required implement
the Overlog program. And finally, a series of hardware
generator plugins create the actual Verilog unit
implementations of the dataflow elements used by the
planner.

5. System Architecture

An RDL design is composed of communication
units, the lowest level of which are implemented in a host
language, in this case Verilog. A P2 system however is
composed from a fixed set of elements, assembled to
match the input Overlog program.

This section describes the elements we have
implemented as RDL units, and the planner transformation
which assembles these elements. Shown in figure 5 below
is a complete system including the network, several rule
strands, a table and the table of base facts which are used
to initialize the Overlog program.

As in P2, our implementation consists of a series
of linear dataflow sub-graphs called, roughly one per
Overlog rule. Each strand starts with a triggering event,
and ends with a resulting action. Events include updates
to tables, reception from the network or timers specified
using the special periodic relation.

—n Rule Strand1 H

SL181 Rule Strand2 — § || Network &
< €] & Routing

& I ,, L8 T

B i Rule Strand3 | Rule Strand4 |
Faa:tz " (Illf‘Jeor Trzrl;le) i (|/ou oer Pt:ir;dic) H :
Materialized
Table
Network Cloud
Figure 5: A Complete Overlog Node
5.1 Data Representation
This system includes two programming

languages and three abstractions of computation, each
with its own data model. At the Overlog level, data is
presented as materialized relations and tuple streams
which are manipulated with the standard relational
operators. We write these tuples as follows.

<10.1.1.1, 0, true>

This is an example of a tuple with a destination
network address, followed by an integer and a Boolean
field. Notice that this abstraction omits the details of
mapping these tuples to actual wires.

RDL units handle tuples as streams of fields,
annotated with type, start of tuple and end of tuple signals.
The RDL declaration for these messages is shown below.

message <IWidth, TIDWidth, NAWidth> mstruct {
Data<$IWidth, $TIDWidth, S$NAWidth> Data;
Marker Marker;

} Field;

message <IWidth, TIDWidth, NAWidth> munion {
bit<$IWidth> Integer;
::1::NetAddress<$NAWidth> NetAddress;
bit<l> Boolean;

event Null;
} Dataj;
message mstruct {

bit<1l> Start, End;
} Marker;

From this specification of RDL messages, RDLC
automatically generates wires of the specified bit widths,
for each field of a union or struct. Union fields are
muxed down to a single set of wires for transmission and
storage in the channel. In order to support this
marshaling, RDLC adds a of tag wires and constants
which allow a unit or channel to specify which subtype a
union currently holds.

Our representation of tuples was designed with
two constraints in mind. First, because the original P2
system uses seconds as the time units, time multiplexing
hardware is a profitable way to reduce implementation
costs without affecting the functionality of Overlog
programs. Even with time units in milli-or micro-seconds,
bottlenecks due to the serialization of fields are unlikely,
given that most modern FPGA implementations run in
excess of S0OMHz without difficulty.

The second constraint is on the handling of
variable length and un-typed tuples. In addition to
components like the network and arbiters, which must
handle tuples from widely different relations, our early
experiences trying to build distributed databases in
Overlog suggested that the ability to store dynamically
typed tuples would be a valuable feature. By supporting
this kind of processing we can allow future work to build
run time programmable tuple processing elements. These
elements will be costlier due to lack of typing information,
hence the addition of types to Overlog in order to reduce
these costs where possible.

As a final note, because the bit widths of the
values in our system have been parameterized, it is
possible to build smaller or larger systems as needed on a
protocol to protocol basis, simply by changing the width
of integers or network addresses. In the future we believe
a more direct translation between Overlog and RDL types
would be helpful both for implementation efficiency and
for supporting Overlog as a debugging tool for RDL.

5.2 Tables & Storage

Because Overlog is primarily targeted to building
overlay networks, materialized tables are slightly different
than standard SQL-style tables. In addition to size limits
and keys for tuple identity, Overlog includes expiration
times for stored tuples.

Providing support for all three of these features
in hardware was one of the primary sources of
implementation complexity for this project. With the high
implementation costs of hash-based indexing structures,
and the relatively small size of tuples and tables, we chose
to implement all table operations as linear scans.

Shown in figure 6 is the composite table unit,
which supports a single input and output. Input requests
are represented as an RDL message union of events,
which reduces to a set of tag wires with no data.

message munion {
event Scan, Insert, Delete;
} TableRequest;

£
)
8
3
MatchCopy
+
2
e

S
g
Reorderd 2 5
Table "‘n——‘r_‘»g H
& g
- “Advance _ TFP ,%+ Kl
H 3 2 g e
2 -5 Fork {+{ Reorder1 }»%» > 3
3 Fey g £ 8)
|3 Decode | & > T awbncer] _ Timestamp | |
€ Core S 8
(Memory) [—Fiaginpu Flag FIFO S >
- :
p

Figure 6: Table Implementation

A scan operation simply iterates over all tuple
fields in the table sending them to the output in order. An
insert and delete must also perform a join against the input
tuple to match keys. In both cases a match implies that
the existing tuple should be dropped. Because these
operations are implemented as scans, they can in fact
perform garbage collection on unused areas of the table
memory, by simply rewriting the entire table. Tables can
include tuple expiration times, forcing a rewrite on a scan
as well in order to avoid outputting a stale tuple.

Because new tuples are always inserted at the
end of the table, and the table is garbage collected on each
scan, it was a simple matter to implement the drop-oldest
semantics for full tables: the oldest tuple will always be
the first one in scan order.

DestMask

NS
] 2 » Scan
Scans —»— £ — Result
— 3 [Resuits
g
—— 2 [Tupley
Deletes —— < Table
— 2 |-Reqf
Q
©
i
— 2
Inserts ——| i o —— Updates
—r Multi-Tabe O

Figure 7: Multi-Port Table Adap’ater

Shown in figure 7 is the unit used to provide
multiple ports to the table, in order to support multiple
rules which access a single table. The input stage consists
of a round-robin arbiter, modified to allow multiple table
scans to proceed in parallel. Since it is common for many
rules to use a table in their predicate, this is an important
performance optimization.

In our original design system, we intended to
pack tuples down to the minimum number of bits, shifting
and filling where needed based on types. However,
providing support for un-typed tuples made this an

expensive proposition, as the implementation would
require either a barrel shifter (very expensive in FPGAs)
or possibly many cycles per field. Instead each tuple field
is stored at a separate address in the table memory.
5.3 Rule Strands

Figure 8 shows a complete rule strand, including
the logic for triggering table scans on the arrival of an
event, and the tuple operation unit, shown in detail in
figure 9.

Operations for Other Strands

Tuple

N 3»—} Result Tuples
Operation !

Scan

Event Tuples —— Gen

Figure 8: Rule Strand

Because each Overlog rule has at most a single
event predicate which is joined with many materialized
tables, each strand consists of a series of nested scans
which are triggered by the arrival of the relevant event. In
Overlog an event can be an update to a table, the arrival of
a tuple from another node, or a periodic timer event.

Advance 2
- v o~]
k] B —
Table Scan 1 —)|Fork2|— £ Reorder s¥ o5&
S B =
w o 0 Qo
Advance 1 § 5
= 3| a©
Table Scan 2 e Reorder 29 o ® | —» Output Stream
S B T L
w [¢] ir 2
Advance o £
o 2 ¢
3, 23
Tuple Stream Reorder %» =<
B
\ o

Tuple Operation (Rule Strand)
Figure 9: Tuple Operation Unit

Tuples, including the event tuple, and those
resulting from scans, are fed into a Tuple Operation unit,
which consists of a series of field reordering buffers,
chained to implement a nested loops join, and a Tuple
Field Processor, which will perform the actual
calculations. We describe the Tuple Field Processor in
section 5.4.

Advance

Field Drop . R
N Page ‘
Counter uCode | |
Field Buffer Output
Memory " (Opaque)

Input
(Opaque) Copy Read
uCode Counter

Field Reorder & Copy

Figure 10: Field Reorder Buffer

Figure 10 shows the implementation details of
the field reorder buffer. These buffers duplicate and drop

fields as required to support the calculations and joins
specified by the Overlog. For example the rule
Result@N() :- periodic@N(A, 10) does not use any of the
input fields of the periodic event stream, in which case the
reorder buffer for the periodic stream will simply drop all
fields. In the rule Result@N(A, A) :- Predicate @N(A, B,
C), the field reorder buffer would duplicate the A field,
and drop the B and C fields.

The reorder buffers decouple the sequencing of
data, which is implied by the output field order, from the
operations performed in the Tuple Field Processor. The
alternative is direct implementation of the dataflow graph
extracted from each rule, with a channel for each variable.
However, because tuples will not arrive very close
together such a direct implementation would be severely
wasteful in FPGA resources to no appreciable benefit.

5.4 Tuple Field Processor

In order to time share the hardware which
performs the computation for each Overlog rule, we built
a small stack processor generator. While there must still
be one such processor per Overlog rule, this decreases the
implementation cost by a factor between 5 and 20,
depending on the complexity of the rule.

A tuple field processor has three memories:
stack, constant table and instruction ROM. It implements
relational join, select, aggregate and computations.
Projection is handled in the reorder buffers.

OpOutput:

2
8

g
5 =
3 Stack Memory I Op
Stack Top — 5 b4 {

o)
® g A

2

8 StackSecond:

Constant Table
I
Operation-

—XLonstAddi
@
Iy
2
2
o
D
@
=

StackIn
MPCMQ
PC Select

—PCH f——————Selectload——P|

Instruction ROM Output

Figure 11: Tuple Field Processor

Figure 11 shows a simplified schematic of a tuple
field processor. The operations bubble is specialized for
the operations required by the Overlog rule the TFP
implements. Furthermore, there is no support for jump,
conditional or loop constructs. Without conditionals,
selection is implemented by optionally writing output
fields based on prior binary selection conditions that result
from both joins and Overlog selection clauses.

Using a processor introduces the possibility of
loading new transformations in at run time, by adding a

port to write incoming tuples to the instruction memory.
This would allow an Overlog node to be dynamically
reprogrammed without re-running the compiler tools.
This is less general than full FPGA reconfiguration, since
it cannot change the overall dataflow of tuples, however
that could be implemented using mux units.

A significant portion of the Overlog compiler
code is actually the compiler from Overlog to a custom
assembly language for the TFP, and the code which then
assembles and links these programs and builds the
specialized TFPs to execute them.

Conceptually, the TFP and its assembly language
are very similar to the PEL transforms which are
embedded in the original P2 system for much the same
purpose. However where PEL transform significantly
ease the implementation of Overlog in software, the TFP
is an efficiency optimization which reduces the size of the
generated circuits by almost an order of magnitude for
more complex rules.

5.5 Network Interfacing

The extremely large capacity of modern FPGAs
such as the Xilinx Virtex2Pro 70 on the BEE2, enables us
to pack many Overlog nodes on each FPGA. This implies
that the network infrastructure must span both on-chip and
off-chip connections. To this end, we developed a high-
bandwidth cross-bar packet switch to connect nodes
regardless of their location. As with the components in
the nodes themselves, the cross-bar and the network
interfaces were designed and implemented in RDL.

Figure 12 shows a simple schematic of the
network interface which connects each node to the
network and test infrastructure.

Network Interface

Send Tuple

Packetize Serialize —

Destinati

Tranceiver

Loopback Queue

Recv Tuple «———

f——

l«— Depacketize |«— Deserialize

Figure 12: Network Interface

This interface sends packets composed of
individual tuples encapsulated inside a tuple containing
source and destination information. The tuples come into
and out of the interface as a series of fields and are
serialized down to an fixed size for transmission through
the network.

The switch provides a parameterized number of
ports, all fully connected through a cross-bar connection.
The choice of a cross-bar enables the highest performance
at the cost of increased resource utilization. We have also
implemented a “horn and funnel” type switch which uses
fewer resources and has lower performance. One of the

T

RX

key points of this network is that the bandwidth is
essentially the network width times the number of
crossbar ports, lending itself to creating large, high
bandwidth networks very easily.

Overlog nodes are not the only endpoints on this
network. Transceivers and “proxies” can be attached to
any port, allowing nodes to communicate from FPGA to
FPGA on the same board and on other boards. For our
test harness, we use this capability to connect the nodes to
a Linux system running on the BEE2 control FPGA in
order to inject and collect tuples through C programs..

Finally, the switch instantiates a module which
specifies a routing policy for each port. For our test
system we use a simple policy that routes based on switch
port number with a designated default port. More
complicated routing policies such as longest prefix match
are also possible.

6. Testing

Since our implementation is still in the relatively
early phases, we have only run a series of small and
synthetic test programs through it. Original we had hoped
to run a Chord ring, but the complete Overlog semantics
remain more complicated than could be implemented with
RDLC?2 within a reasonable timeframe (See section 9.3).
6.1 Test Overlog Programs

Our tests consist of several example Overlog
programs designed to exercise the Overlog compiler,
planner, TFP generator and Table implementation. Of
course these tests also cover the vast majority of the
hardware unit implementations.

e Facts: This test was designed simply to display
Overlog base facts without processing. This is
the bare minimum Overlog program, though it
does test portions of the networking hardware,
and the majority of the infrastructure code. In
addition to a sanity check, this provides absolute
minimum implementation costs.

e Simple: The simple test consists of a single rule,
which fires periodically and increments the
sequence number generated by a timer. In
addition to the hardware in the Facts program,
this includes a periodic timer, and a single Tuple
Operation unit, with a single reorder buffer.

e Multi-Stream: Building on the simple test, this
program generates a tuple stream by performing
some simple calculations on a periodic tuple, and
then runs these tuples through two more rules.
This primary motivation for this test was to
provide latency and circuit size measurements.

e Table: A simple table test, which performs
inserts and limited scans over a table which
stores a single tuple. This test exhibits a base

implementation cost of the table, for size and

performance comparisons.

e Join: This test adds a larger table, 20 tuples, and
performs a join over these to lookup tuples
inserted during a specified time range according
to sequence numbers from the periodic source.

e Aggregate: Performs a series of simple
aggregates over a table, including count, min and
max.

e SimpleNet: A relatively simple network test,
which accepts tuples, performs a calculation on
them and sends the resulting tuple back to a
given address. This was used to test the network
interfaces and Linux based debugging tools.

6.2 Test Platform

We are currently using the BEE2 as our test
platform, primarily because it is used by the RAMP
project. The topology of the BEE2 is such that one of the
five FPGAs is designated the “control” FPGA while the
remaining four are designated the “user” FPGAs. The
control FPGA boots full Debian GNU/Linux on one of the
embedded PowerPC 405s in the Virtex2Pro. From this a
user can log in to the board, program the user FPGAs and
interact with them over high-speed parallel I/Os links.

We have reused infrastructure we originally
developed for the RAMP project to connect the tuple
network directly to software accessible FIFOs on the
control FPGA. The linux kernel on the has drivers which
abstract the these FIFOs as either character devices or
virtual Ethernet channels. We use the FIFOs as character
devices allowing us to write simple C code to inject and
read back tuples by reading and writing files. Figure 13
gives a schematic view of this connectivity.

User FPGA 1

=% ™| RAMP Chord
Node

mdl X
Control FPGA

RAMP Chord
Node

PPC
(Linux)

User FPGA 4

RAMP Chord
Node

RAMP Chord
Node

4

Figure 13: Network Topology

In addition to sending and receiving tuples
through this interface, we use the hardware FIFOs to
collect statistics and events directly from the hardware.
By sharing the infrastructure originally developed for the
RAMP project, we have significantly eased the integration
of standard Linux software and raw hardware.

Future development with Overlog and RDL will
make I/O a first class primitive which can be more easily
defined within the language itself. Having I/O defined
explicitly in the system description will enable more
robust debugging and potentially higher performance
communication. By integrating this with the cross-
platform capabilites of RDLC, we can also ensure that
future projects will be able to share similar
communications infrastructure even more easily than we
were able to.

7. Performance Results

This section presents performance numbers both
on the compiler and the hardware that it generates. Given
that this project is still in the relatively early stages, these
should be considered rough numbers.
7.1 Compiler Performance

Shown in table 1 below are various compiler and
simulation performance metrics for the test programs
described in section 6.1. Most of these metrics are tied to
the high level system design and the conceptual mapping
of Overlog onto RDL. Even without a current basis for
comparison, these numbers are important as a baseline for
our future work.

Test Memory Comp. Load Sim
Time Time Time
Facts 10MB 5.51s 1:07m 1.68s
Simple 13MB 5.65s 1:15m 2.84s
MultiStream | 13MB 15.22s 1:42m 3.43s
Table 15MB 18.96s 1:39m 5.21s
Join 18MB 17.01s 1:28m 5.14s
SimpleNet 11MB 11.70s 1:57m 1.82s

Table 1: Compiler and Simulation Costs

The four numbers, in order, the RDLC and
Overlog compiler memory usage and time, minus the
30MB and the time it takes to load all of RDLC and the
JVM. At 150K lines of code and 10MB even for a simple
Overlog design, the compiler is clearly overly large. See
section 9.3 for more information.

The next two metrics are related to the
performance of hardware simulations using the industry
standard ModelSim SE 6.1e. The load time is measured
from simulator invocation to the completion of Verilog
compilation, and is a reasonable metric for the code
complexity. The simulation time is the amount of real
time taken to simulate 100us circuit operation, more than
enough time for all of the programs to do useful work.
The clock period of the simulation is Ins, to ease the
math, despite the fact that this is unrealistic. Most of the
load time is inherent in the simulator we used, especially
since it uses a networked licensing scheme. Load times
therefore are a relative measure of complexity.

10

All compilations and simulations in this table
were run of an unloaded P4 3GHz with 1GB of RAM.

Aside from the memory hogging inherent in
RDLC, most of which is due to inefficiencies in the
RDLC?2 core, and it’s java implementation, these numbers
are reasonably promising. We revisit the simulation time
in section 9.3 however.
7.2 Micro-benchmark Performance

Shown in table 2 are the results of the Xilinx
FPGA Place and Route tools for each test program. These
results were produced with Xilinx ISE 8.1 on an AMD
Opteron 146 with 3 GB of memory. For these we used
the included XST synthesis tool, rather than the more
powerful Synplify Pro because of issues with IP licensing
for Xilinx specific cores.

Test #LUT #FF Clock Time
Facts 468 450 175MHz | 1m35s
Simple 1155 867 172MHz | 2ms
MultiStream | 2260 1546 173MHz | 3m47s
Table 2303 1655 173MHz | 3m?25s
Join 2606 1837 177MHz | 3m50s
SimpleNet 980 806 176 MHz | 1m55s

Table 2: Hardware Statistics

The LUT and Flip-Flop counts are presented for
two reasons, first, they impose a hard limit on the number
of nodes which can be implemented in an FPGA. In
addition they affect the PAR tool run time and clock
frequency the synthesized circuits can run at.

Given that the largest tests implemented roughly
a single Overlog rule, a Virtex2Pro 70 could hold roughly
a single Chord node. However, we believe that these
hardware costs could be significantly reduced with better
compiler optimizations.

The most impressive numbers in table 2 are
undoubtedly the clock frequencies. A 100MHz design on
a Virtex2Pro is fairly standard, and not too difficult, but
normally anything over this must be hand optimized for
performance. From the fact that RDL designs with small
units generally balance LUT and Flip-Flop usage, it is
clear that these designs are highly pipelined, with
increases their operation frequency into a range unheard
of for automatically generated designs.

As impressive as the raw numbers in table 2 is
the simple fact that P2 takes ~100ms to respond to a
query, whereas our hardware implementation will
typically respond in maybe 100 clock cycles, which at
100MHz results in a lus turn around on input queries, a
very impressive result for a such a high level input
language as Overlog. Of course the price for this
performance includes the cost of owning and FPGA
board, which many researchers do not.

However the biggest price, is undoubtedly the
cost of recompiling a system through the FPGA synthesis

tools. While the runtimes for these projects are
reasonable, many larger BEE2 applications have been
known to take in excess of 12 hours, implying that
progress in this area will be required to make hardware
Overlog implementations as flexible as their software
counterparts.

8. Conclusion

By and large, this project marks a considerable
success and the confluence of several research projects.
By themselves Overlog, RDL and the BEE2 are all
interesting, but combined they promise to open up both
new research avenues and new application areas. Despite
the successful execution of this project, there exists a
significant amount of work to be done, as outlined in
section 9. In the remainder of this section we detail the
lessons from our implementation efforts, and discuss their
impact.

Many of the implementation decisions in this
paper relate to the running time and space of our design.
When switching from software to hardware, O(1) becomes
O(n) because operations reflect their per-bit cost in the
absence of a fixed bit width CPU. This caused us
consternation during the design process, as we tried to
optimize all of our operations, with little regard to relative
run time of hardware and software. What’s efficient in
hardware is not the same as what is efficient in software
and a project, like this, which spans the two can be tricky
to design. In the end we took the view that a functional
result was the primary goal and speed could wait. We feel
justified in this, as it was often unclear what was feasible
and what was not, and with 150 thousand lines of code in
the various compilers, it has been a significant effort to
get to this point. Furthermore the hardware
implementation by virtue of its specialization is faster than
most software could ever hope to be, even without heavy
optimization.

In the end the biggest drawback of the current
implementation of the Overlog compiler and language
relates to its inability to handle system level I/O. While
our test platform provides a clean link to software which
can inject and read back tuples, the process of making this
connection to an I/O block needs to be automated in the
compiler. We believe this will prove to be one of the
main requirements for useful systems written in Overlog,
just as the ability to generate non-channel connections was
key to making RDL a useful language for this project.

The best news at the conclusion of this project is
the relative ease with which it was completed. Normally
any hardware design this large might take a man-year or
more. However we implemented it in 3 months, including
2 and % man-months of coding for RDLC2, and the
FLEET [18, 19] compiler, an extension to RDLC2 similar
to the Overlog compiler, which provided good debugging
tests for RDLC2. The Overlog compiler and elements

11

themselves took about 3 weeks and we were able to
implement the complete system in about 6 man-weeks.

Furthermore, those Verilog modules which are
generated by Java plugins for RDLC are very powerful,
allowing the Tuple Field Processor and Reorder units
described in section 5 to be built from scratch in about 2
days total, with another half day of debugging.
Considering that these units amount to a small data cache
and processor, along with an assembler and processor
builder, this is an almost unheard of time frame.

We believe the modularity of RDL, combined
with the high-level semantics of Overlog contributed
significantly to the ease of development. For example, the
testing was quite laborious until we implemented the Base
Facts unit to supply raw tuples specified in an Overlog
program to a P2 system at startup. What’s more it took
only a few hours to add all of the language and compiler
support for this feature.

Overall the success of these compiler tools in
assisting their own development suggests that they are
most definitely useful, and we look forward to building
real applications with them. This success has also been a
large part of our interest in applying these tools to
architecture debugging for the RAMP project.

9. Future Work

A significant fraction of the time to complete this
project was simply getting to the point where sufficiently
complicated RDL could be compiled to hardware. In the
end, the quality of implementation of the Overlog
compiler has been sacrificed somewhat for speed of
development: there’s a definite lack of flexibility in the
RDLC2 framework and supported Overlog constructs.

For example a better framework for the planner
would easily allow us to implement Chord, as outlined
below, as well as providing compile time optimizations
like constant propagation and expression simplification.
9.1 Chord in Hardware

In the relatively short term we hope to be able to
boot a chord ring in hardware. By adding type
declarations, and some minor lexical and syntactic
changes, we were easily able to compile the Chord
specification used for P2 testing, but it cannot be
transformed into RDL with the current version of RDLC2
and the Overlog planner.

The first big problem here is the use of null or
out-of-band values. We did not implement support for
these well enough, and changing this would have required
rewriting large portions of Java that generates Verilog.
Furthermore compiling Chord also exposed a latent bug in
our handling of nested table scans for rules with multiple
materialized table inputs and again the fix for this would
have involved painful surgery on Verilog. We will
discuss these problems in section 9.3.

9.2 Java Implementation

Early in this project, while we were using
RDLCI1, which has Java output support, we actually did a
fair amount of work on a java implementation to match
the hardware. Because RDLC is designed generate code
for software and hardware hosts equally easily, this would
open up interesting possibilities for research. Firstly, this
would provide option to split the implementation between
hardware and software. Second because an RDL software
system is essentially a highly parallel program with a user
level scheduler, this would promote a whole range of
systems research from schedulers to protection and IPC.

The main different would be a lack of TFP in
software, as having access to the RDLC java generation
back end would allowed us to hard code the tuple
operations with the need for a TFP or PEL transform.

9.3 RDLC3

Many of the problems we encountered were
related to shortcomings of the RDL Compiler and the
compiler framework. While the second generation code
base greatly increased our capabilities the actual compiler
code itself is still rather messy, making changes to plugin
compilers, like Overlog, difficult.

Our biggest problem was the immaturity of the
library of hardware units upon which we could draw.
Tools like the Xilinx Core Generator already exist in this
area but are vendor specific, do not fit the RDL model and
are tend to be both buggy and closed source. One of the
features on the short list for RDLC3, and key to our
implementation of Chord is better integration of generated
units into the compiler either in the form of macro-
replacement, language fragments [20] or at least a better
Verilog output back end.

Expanding the unit library to include a DRAM
controllers, as opposed to just the SRAM generators
which we built, would allow us to build a paging
mechanism to store of large relations in the DDR2 DRAM
on the BEE2. DRAM controllers as mentioned in section
2.4, remain one of the most time consuming pieces of
hardware and yet they will be required to produce large
scale Overlog systems which go beyond simple overlay
networks.

9.4 Debugging Tools & Features

From the 2-3min turn around time on debugging
even our micro benchmarks, it became clear that we need
better performance out of the simulation environment for
those situations where an FPGA is a poor test platform.

In addition, we faced a significant number of
crash bugs in ModelSim during the course of RDLC2
development. Some were alleviated by an upgrade, but
some have been documented by the authors for up to two
years now without a forthcoming fix.

In addition to finding a better simulation
environment, we believe the by developing on the ideas in
[16] and section 3.2 we could more easily debug Overlog,
the compiler itself and general RDL designs. As part of

12

RDLC3 we plan to integrate the Overlog compiler with
the forthcoming RDL debugging framework to support
debugging not just of Overlog designs, but of all RDL
designs.

We believe these enhancements, experience and
maturity in our tools with lead to their use in real systems
in short order, as they provide much needed functionality.

10. References

1. Loo, B.T., et al., Implementing Declarative Overlays. 2005:
UC Berkeley. p. 1-16.

2. Gibeling, G., A. Schultz, and K. Asanovic, RAMP
Architecture & Description Language. 2005, UC Berkeley.

3. Kohler, E., et al., The Click modular router. ACM
Transactions on Computer Systems, 2000. 18(3): p. 263-97.

4. Kohler, E., R. Morris, and C. Benjie. Programming
language optimizations for modular router configurations.
in Tenth International Conference on Architectural Support
for Programming Languages and Operating Systems. San
Jose, CA.2002.

5. Loo, B.T., J.M. Hellerstein, and 1. Stoica. Customizable
Routing with Declarative Queries. in Third Workshop on
Hot Topics in Networks (HotNets-I11). 2004.

6. Loo, B.T., et al.,, Declarative routing: extensible routing
with declarative queries. SIGCOMM Comput. Commun.
Rev., 2005. 35(4): p. 289-300.

7. Szekely, B. and E. Torres, A Paxon Evaluation of P2. 2005.

8. Stoica, 1., et al. Chord: a scalable peer-to-peer lookup
service for Internet applications. in ACMSIGCOMM 2001
Conference. Applications, Technologies, Architectures, and
Protocols for Computer Communications. San Diego, CA.
2001.

9. Culler, D.E. and Arvind. Resource requirements of dataflow

programs. in Honolulu, HI. 1988.

Chang, C., J. Wawrzynek, and R.W. Brodersen, BEE2: a

high-end reconfigurable computing system. IEEE Design &

Test of Computers, 2005. 22(2): p. 114-25.

Wawrzynek, J., et al., RAMP Research Accelerator for

Multiple Processors. 2005.

Huebsch, R., et al., Querying the Internet with PIER. 2003.

p- 1-12.

Rodriguez, A., et al. MACEDON: methodology for

automatically creating, evaluating, and designing overlay

networks. in First Symposium on Networked Systems Design

and Implementation (NSDI '04). San Francisco, CA. 2004.

Patterson, D., Research Accelerator for Multiprocessing.

2006.

Droz, P.-Y., Physical Design and Implementation of BEE2:

A High End Reconfigurable Computer, in EECS. 2005, UC

Berkeley: Berkeley, CA.

Singh, A., et al. Distributed Monitoring and Forensics in

Overlay Networks. in Conference of the European

Professional Society for Systems. 2006. Leuven, Belgium.

Manish, V., N. Vachharajani, and D.I. August. The Liberty

structural specification language: a high-level modeling

language for component reuse. in 2004 ACM SIGPLAN

Conference on Programming Language Design and

Implementation (PLDI'04). Washington, DC. 2004.

Sutherland, 1., FLEET — A One-Instruction Computer. 2005.

p- 1-12.

Coates, W.S., et al. FLEETzero: an asynchronous switching

experiment. in Proceedings Seventh International

Symposium on Asynchronous Circuits and Systems. ASYNC

2001. Salt Lake City, UT. 2001.

Adams, S.R., Modular Grammars for Programming

Language Prototyping. 1991, University of Southampton.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

